58 research outputs found

    A Quantum Convolutional Neural Network for Image Classification

    Full text link
    Artificial neural networks have achieved great success in many fields ranging from image recognition to video understanding. However, its high requirements for computing and memory resources have limited further development on processing big data with high dimensions. In recent years, advances in quantum computing show that building neural networks on quantum processors is a potential solution to this problem. In this paper, we propose a novel neural network model named Quantum Convolutional Neural Network (QCNN), aiming at utilizing the computing power of quantum systems to accelerate classical machine learning tasks. The designed QCNN is based on implementable quantum circuits and has a similar structure as classical convolutional neural networks. Numerical simulation results on the MNIST dataset demonstrate the effectiveness of our model.Comment: 7 pages, 7 figure

    Cryptanalyzing an image encryption algorithm based on autoblocking and electrocardiography

    Get PDF
    This paper performs a thorough security analysis of a chaotic image encryption algorithm based on autoblocking and electrocardiography from the view point of modern cryptography. The algorithm uses electrocardiography (ECG) signals to generate the initial key for a chaotic system and applies an autoblocking method to divide a plain image into blocks of certain sizes suitable for subsequent encryption. The designers claimed that the proposed algorithm is “strong and flexible enough for practical applications”. We find it is vulnerable to the known plaintext attack: based on one pair of a known plain-image and its corresponding cipher-image, an adversary is able to derive a mask image, which can be used as an equivalent secret key to successfully decrypt other cipher images encrypted under the same key with a non-negligible probability of 1/256. Using this as a typical counterexample, we summarize some security defects existing in many image encryption algorithms

    Theoretical Design and FPGA-Based Implementation of Higher-Dimensional Digital Chaotic Systems

    Full text link
    Traditionally, chaotic systems are built on the domain of infinite precision in mathematics. However, the quantization is inevitable for any digital devices, which causes dynamical degradation. To cope with this problem, many methods were proposed, such as perturbing chaotic states and cascading multiple chaotic systems. This paper aims at developing a novel methodology to design the higher-dimensional digital chaotic systems (HDDCS) in the domain of finite precision. The proposed system is based on the chaos generation strategy controlled by random sequences. It is proven to satisfy the Devaney's definition of chaos. Also, we calculate the Lyapunov exponents for HDDCS. The application of HDDCS in image encryption is demonstrated via FPGA platform. As each operation of HDDCS is executed in the same fixed precision, no quantization loss occurs. Therefore, it provides a perfect solution to the dynamical degradation of digital chaos.Comment: 12 page

    Cryptanalysis of a Chaotic Image Encryption Algorithm Based on Information Entropy

    Get PDF
    Recently, a chaotic image encryption algorithm based on information entropy (IEAIE) was proposed. This paper scrutinizes the security properties of the algorithm and evaluates the validity of the used quantifiable security metrics. When the round number is only one, the equivalent secret key of every basic operation of IEAIE can be recovered with a differential attack separately. Some common insecurity problems in the field of chaotic image encryption are found in IEAIE, e.g. the short orbits of the digital chaotic system and the invalid sensitivity mechanism built on information entropy of the plain image. Even worse, each security metric is questionable, which undermines the security credibility of IEAIE. Hence, IEAIE can only serve as a counterexample for illustrating common pitfalls in designing secure communication method for image data.Comment: 9 pages, 6 figures, IEEE Access, 201
    corecore